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monomvn-package Estimation for Multivariate Normal and Student-t Data with Mono-
tone Missingness

Description

Estimation of multivariate normal and student-t data of arbitrary dimension where the pattern of
missing data is monotone. Through the use of parsimonious/shrinkage regressions (plsr, pcr, lasso,
ridge, etc.), where standard regressions fail, the package can handle a nearly arbitrary amount of
missing data. The current version supports maximum likelihood inference and a full Bayesian
approach employing scale-mixtures for Gibbs sampling. Monotone data augmentation extends this
Bayesian approach to arbitrary missingness patterns. A fully functional standalone interface to the
Bayesian lasso (from Park & Casella), the Normal-Gamma (from Griffin & Brown), Horseshoe
(from Carvalho, Polson, & Scott), and ridge regression with model selection via Reversible Jump,
and student-t errors (from Geweke) is also provided

Details

For a fuller overview including a complete list of functions, demos and vignettes, please use
help(package="monomvn").



blasso 3

Author(s)

Robert B. Gramacy <rbg@vt.edu>

Maintainer: Robert B. Gramacy <rbg@vt.edu>

References

Robert B. Gramacy, Joo Hee Lee and Ricardo Silva (2008). On estimating covariances between
many assets with histories of highly variable length.
Preprint available on arXiv:0710.5837: https://arxiv.org/abs/0710.5837

https://bobby.gramacy.com/r_packages/monomvn/

See Also

monomvn, the now defunct norm package, mvnmle

blasso Bayesian Lasso/NG, Horseshoe, and Ridge Regression

Description

Inference for ordinary least squares, lasso/NG, horseshoe and ridge regression models by (Gibbs)
sampling from the Bayesian posterior distribution, augmented with Reversible Jump for model
selection

Usage

bhs(X, y, T=1000, thin=NULL, RJ=TRUE, M=NULL, beta=NULL,
lambda2=1, s2=var(y-mean(y)), mprior=0, ab=NULL,
theta=0, rao.s2=TRUE, icept=TRUE, normalize=TRUE, verb=1)

bridge(X, y, T = 1000, thin = NULL, RJ = TRUE, M = NULL,
beta = NULL, lambda2 = 1, s2 = var(y-mean(y)), mprior = 0,
rd = NULL, ab = NULL, theta=0, rao.s2 = TRUE, icept = TRUE,
normalize = TRUE, verb = 1)

blasso(X, y, T = 1000, thin = NULL, RJ = TRUE, M = NULL,
beta = NULL, lambda2 = 1, s2 = var(y-mean(y)),
case = c("default", "ridge", "hs", "ng"), mprior = 0, rd = NULL,
ab = NULL, theta = 0, rao.s2 = TRUE, icept = TRUE,
normalize = TRUE, verb = 1)

Arguments

X data.frame, matrix, or vector of inputs X

y vector of output responses y of length equal to the leading dimension (rows) of
X, i.e., length(y) == nrow(X)

T total number of MCMC samples to be collected

https://arxiv.org/abs/0710.5837
https://bobby.gramacy.com/r_packages/monomvn/
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thin number of MCMC samples to skip before a sample is collected (via thinning). If
NULL (default), then thin is determined based on the regression model implied
by RJ, lambda2, and ncol(X); and also on the errors model implied by theta
and nrow(X)

RJ if TRUE then model selection on the columns of the design matrix (and thus the
parameter beta in the model) is performed by Reversible Jump (RJ) MCMC.
The initial model is specified by the beta input, described below, and the maxi-
mal number of covariates in the model is specified by M

M the maximal number of allowed covariates (columns of X) in the model. If input
lambda2 > 0 then any M <= ncol(X) is allowed. Otherwise it must be that M <=
min(ncol(X), length(y)-1), which is default value when a NULL argument is
given

beta initial setting of the regression coefficients. Any zero-components will imply
that the corresponding covariate (column of X) is not in the initial model. When
input RJ = FALSE (no RJ) and lambda2 > 0 (use lasso) then no components are
allowed to be exactly zero. The default setting is therefore contextual; see below
for details

lambda2 square of the initial lasso penalty parameter. If zero, then least squares regres-
sions are used

s2 initial variance parameter

case specifies if ridge regression, the Normal-Gamma, or the horseshoe prior should
be done instead of the lasso; only meaningful when lambda2 > 0

mprior prior on the number of non-zero regression coefficients (and therefore covari-
ates) m in the model. The default (mprior = 0) encodes the uniform prior on 0 <=
m <= M. A scalar value 0 < mprior < 1 implies a Binomial prior Bin(m|n=M,p=mprior).
A 2-vector mprior=c(g,h) of positive values g and h represents gives Bin(m|n=M,p)
prior where p~Beta(g,h)

rd =c(r, delta), the alpha (shape) parameter and β (rate) parameter to the gamma
distribution prior G(r,delta) for the λ2 parameter under the lasso model; or,
the α (shape) parameter and β (scale) parameter to the inverse-gamma distri-
bution IG(r/2, delta/2) prior for the λ2 parameter under the ridge regression
model. A default of NULL generates appropriate non-informative values depend-
ing on the nature of the regression. Specifying rd=FALSE causes lambda2 values
to be fixed at their starting value, i.e., not sampled. See the details below for in-
formation on the special settings for ridge regression

ab =c(a, b), the α (shape) parameter and the β (scale) parameter for the inverse-
gamma distribution prior IG(a,b) for the variance parameter s2. A default of
NULL generates appropriate non-informative values depending on the nature of
the regression

theta the rate parameter (> 0) to the exponential prior on the degrees of freedom
paramter nu under a model with Student-t errors implemented by a scale-mixture
prior. The default setting of theta = 0 turns off this prior, defaulting to a normal
errors prior

rao.s2 indicates whether Rao-Blackwellized samples for σ2 should be used (default
TRUE); see below for more details
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icept if TRUE, an implicit intercept term is fit in the model, otherwise the the intercept
is zero; default is TRUE

normalize if TRUE, each variable is standardized to have unit L2-norm, otherwise it is left
alone; default is TRUE

verb verbosity level; currently only verb = 0 and verb = 1 are supported

Details

The Bayesian lasso model and Gibbs Sampling algorithm is described in detail in Park & Casella
(2008). The algorithm implemented by this function is identical to that described therein, with the
exception of an added “option” to use a Rao-Blackwellized sample of σ2 (with β integrated out) for
improved mixing, and the model selections by RJ described below. When input argument lambda2
= 0 is supplied, the model is a simple hierarchical linear model where (β, σ2) is given a Jeffrey’s
prior

Specifying RJ = TRUE causes Bayesian model selection and averaging to commence for choosing
which of the columns of the design matrix X (and thus parameters beta) should be included in the
model. The zero-components of the beta input specify which columns are in the initial model, and
M specifies the maximal number of columns.

The RJ mechanism implemented here for the Bayesian lasso model selection differs from the one
described by Hans (2009), which is based on an idea from Geweke (1996). Those methods require
departing from the Park & Casella (2008) latent-variable model and requires sampling from each
conditional βi|β(−i), . . . for all i, since a mixture prior with a point-mass at zero is placed on each
βi. Out implementation here requires no such special prior and retains the joint sampling from the
full β vector of non-zero entries, which we believe yields better mixing in the Markov chain. RJ
proposals to increase/decrease the number of non-zero entries does proceed component-wise, but
the acceptance rates are high due due to marginalized between-model moves (Troughton & Godsill,
1997).

When the lasso prior or RJ is used, the automatic thinning level (unless thin != NULL) is determined
by the number of columns of X since this many latent variables are introduced

Bayesian ridge regression is implemented as a special case via the bridge function. This essentially
calls blasso with case = "ridge". A default setting of rd = c(0,0) is implied by rd = NULL, giving
the Jeffery’s prior for the penalty parameter λ2 unless ncol(X) >= length(y) in which case the
proper specification of rd = c(5,10) is used instead.

The Normal–Gamma prior (Griffin & Brown, 2009) is implemented as an extension to the Bayesian
lasso with case = "ng". Many thanks to James Scott for providing the code needed to extend the
method(s) to use the horseshoe prior (Carvalho, Polson, Scott, 2010).

When theta > 0 then the Student-t errors via scale mixtures (and thereby extra latent variables
omega2) of Geweke (1993) is applied as an extension to the Bayesian lasso/ridge model. If Student-
t errors are used the automatic thinning level is augmented (unless thin != NULL) by the number of
rows in X since this many latent variables are introduced

Value

blasso returns an object of class "blasso", which is a list containing a copy of all of the input
arguments as well as of the components listed below.

call a copy of the function call as used
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mu a vector of T samples of the (un-penalized) “intercept” parameter

beta a T*ncol(X) matrix of T samples from the (penalized) regression coefficients

m the number of non-zero entries in each vector of T samples of beta

s2 a vector of T samples of the variance parameter

lambda2 a vector of T samples of the penalty parameter

gamma a vector of T with the gamma parameter when case = "ng"

tau2i a T*ncol(X) matrix of T samples from the (latent) inverse diagonal of the prior
covariance matrix for beta, obtained for Lasso regressions

omega2 a T*nrow(X) matrix of T samples from the (latent) diagonal of the covariance
matrix of the response providing a scale-mixture implementation of Student-t
errors with degrees of freedom nu when active (input theta > 0)

nu a vector of T samples of the degrees of freedom parameter to the Student-t errors
mode when active (input theta > 0)

pi a vector of T samples of the Binomial proportion p that was given a Beta prior,
as described above for the 2-vector version of the mprior input

lpost the log posterior probability of each (saved) sample of the joint parameters

llik the log likelihood of each (saved) sample of the parameters

llik.norm the log likelihood of each (saved) sample of the parameters under the Normal
errors model when sampling under the Student-t model; i.e., it is not present
unless theta > 0

Note

Whenever ncol(X) >= nrow(X) it must be that either RJ = TRUE with M <= nrow(X)-1 (the default)
or that the lasso is turned on with lambda2 > 0. Otherwise the regression problem is ill-posed.

Since the starting values are considered to be first sample (of T), the total number of (new) samples
obtained by Gibbs Sampling will be T-1

Author(s)

Robert B. Gramacy <rbg@vt.edu>

References
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Griffin, J.E. and Brown, P.J. (2009). Inference with Normal-Gamma prior distributions in regression
problems. Bayesian Analysis, 5, pp. 171-188.
doi:10.1214/10BA507

Hans, C. (2009). Bayesian Lasso regression. Biometrika 96, pp. 835-845.
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Carvalho, C.M., Polson, N.G., and Scott, J.G. (2010) The horseshoe estimator for sparse signals.
Biometrika 97(2): pp. 465-480.
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See Also

lm , lars in the lars package, regress, lm.ridge in the MASS package

Examples

## following the lars diabetes example
data(diabetes)
attach(diabetes)

## Ordinary Least Squares regression
reg.ols <- regress(x, y)

## Lasso regression
reg.las <- regress(x, y, method="lasso")

## Bayesian Lasso regression
reg.blas <- blasso(x, y)

## summarize the beta (regression coefficients) estimates
plot(reg.blas, burnin=200)
points(drop(reg.las$b), col=2, pch=20)
points(drop(reg.ols$b), col=3, pch=18)
legend("topleft", c("blasso-map", "lasso", "lsr"),

col=c(2,2,3), pch=c(21,20,18))

## plot the size of different models visited
plot(reg.blas, burnin=200, which="m")

## get the summary
s <- summary(reg.blas, burnin=200)

## calculate the probability that each beta coef != zero
s$bn0

## summarize s2
plot(reg.blas, burnin=200, which="s2")
s$s2

## summarize lambda2
plot(reg.blas, burnin=200, which="lambda2")
s$lambda2

https://bobby.gramacy.com/r_packages/monomvn/
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## Not run:
## fit with Student-t errors
## (~400-times slower due to automatic thinning level)
regt.blas <- blasso(x, y, theta=0.1)

## plotting some information about nu, and quantiles
plot(regt.blas, "nu", burnin=200)
quantile(regt.blas$nu[-(1:200)], c(0.05, 0.95))

## Bayes Factor shows strong evidence for Student-t model
mean(exp(regt.blas$llik[-(1:200)] - regt.blas$llik.norm[-(1:200)]))

## End(Not run)

## clean up
detach(diabetes)

blasso.s3 Summarizing Bayesian Lasso Output

Description

Summarizing, printing, and plotting the contents of a "blasso"-class object containing samples
from the posterior distribution of a Bayesian lasso model

Usage

## S3 method for class 'blasso'
print(x, ...)
## S3 method for class 'blasso'
summary(object, burnin = 0, ...)
## S3 method for class 'blasso'
plot(x, which=c("coef", "s2", "lambda2", "gamma",

"tau2i","omega2", "nu", "m", "pi"), subset = NULL, burnin = 0,
... )

## S3 method for class 'summary.blasso'
print(x, ...)

Arguments

object a "blasso"-class object that must be named object for the generic methods
summary.blasso

x a "blasso"-class object that must be named x for the generic printing and plot-
ting methods print.summary.blasso and plot.blasso

subset a vector of indicies that can be used to specify the a subset of the columns of
tau2i or omega2 that are plotted as boxplots in order to reduce clutter
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burnin number of burn-in rounds to discard before reporting summaries and making
plots. Must be non-negative and less than x$T

which indicates the parameter whose characteristics should be plotted; does not apply
to the summary

... passed to print.blasso, or plot.default

Details

print.blasso prints the call followed by a brief summary of the MCMC run and a suggestion to
try the summary and plot commands.

plot.blasso uses an appropriate plot command on the list entries of the "blasso"-class object
thus visually summarizing the samples from the posterior distribution of each parameter in the
model depending on the which argument supplied.

summary.blasso uses the summary command on the list entries of the "blasso"-class object thus
summarizing the samples from the posterior distribution of each parameter in the model.

print.summary.monomvn calls print.blasso on the object and then prints the result of summary.blasso

Value

summary.blasso returns a "summary.blasso"-class object, which is a list containing (a subset
of) the items below. The other functions do not return values.

B a copy of the input argument thin

T total number of MCMC samples to be collected from x$T

thin number of MCMC samples to skip before a sample is collected (via thinning)
from x$T

coef a joint summary of x$mu and the columns of x$beta, the regression coefficients

s2 a summary of x$s2, the variance parameter

lambda2 a summary of x$lambda2, the penalty parameter, when lasso or ridge regression
is active

lambda2 a summary of x$gamma, when the NG extensions to the lasso are used

tau2i a summary of the columns of the latent x$tau2i parameters when lasso is active

omega2 a summary of the columns of the latent x$omega2 parameters when Student-t
errors are active

nu a summary of x$nu, the degrees of freedom parameter, when the Student-t model
is active

bn0 the estimated posterior probability that the individual components of the regres-
sion coefficients beta is nonzero

m a summary the model order x$m: the number of non-zero regression coefficients
beta

pi the estimated Binomial proportion in the prior for the model order when 2-vector
input is provided for mprior
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Author(s)

Robert B. Gramacy <rbg@vt.edu>

References

https://bobby.gramacy.com/r_packages/monomvn/

See Also

blasso

bmonomvn Bayesian Estimation for Multivariate Normal Data with Monotone
Missingness

Description

Bayesian estimation via sampling from the posterior distribution of the of the mean and covariance
matrix of multivariate normal (MVN) distributed data with a monotone missingness pattern, via
Gibbs Sampling. Through the use of parsimonious/shrinkage regressions (lasso/NG & ridge), where
standard regressions fail, this function can handle an (almost) arbitrary amount of missing data

Usage

bmonomvn(y, pre = TRUE, p = 0.9, B = 100, T = 200, thin = 1,
economy = FALSE, method = c("lasso", "ridge", "lsr", "factor",
"hs", "ng"), RJ = c("p", "bpsn", "none"), capm = TRUE,
start = NULL, mprior = 0, rd = NULL, theta = 0, rao.s2 = TRUE,
QP = NULL, verb = 1, trace = FALSE)

Arguments

y data matrix were each row is interpreted as a random sample from a MVN
distribution with missing values indicated by NA

pre logical indicating whether pre-processing of the y is to be performed. This sorts
the columns so that the number of NAs is non-decreasing with the column index

p when performing regressions, p is the proportion of the number of columns to
rows in the design matrix before an alternative regression (lasso, ridge, or RJ)
is performed as if least-squares regression has “failed”. Least-squares regres-
sion is known to fail when the number of columns equals the number of rows,
hence a default of p = 0.9 <= 1. Alternatively, setting p = 0 forces a parsimo-
nious method to be used for every regression. Intermediate settings of p allow
the user to control when least-squares regressions stop and the parsimonious
ones start; When method = "factor" the p argument represents an integer (pos-
itive) number of initial columns of y to treat as known factors

https://bobby.gramacy.com/r_packages/monomvn/
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B number of Burn-In MCMC sampling rounds, during which samples are dis-
carded

T total number of MCMC sampling rounds to take place after burn-in, during
which samples are saved

thin multiplicative thinning in the MCMC. Each Bayesian (lasso) regression will dis-
card thin*M MCMC rounds, where M is the number of columns in its design ma-
trix, before a sample is saved as a draw from the posterior distribution; Likewise
if theta != 0 a further thin*N, for N responses will be discarded

economy indicates whether memory should be economized at the expense of speed. When
TRUE the individual Bayesian (lasso) regressions are cleaned between uses so
that only one of them has a large footprint at any time during sampling from the
Markov chain. When FALSE (default) all regressions are pre-allocated and the
full memory footprint is realized at the outset, saving dynamic allocations

method indicates the Bayesian parsimonious regression specification to be used, choos-
ing between the lasso (default) of Park & Casella, the NG extension, the horse-
shoe, a ridge regression special case, and least-squares. The "factor" method
treats the first p columns of y as known factors

RJ indicates the Reversible Jump strategy to be employed. The default argument of
"p" method uses RJ whenever a parsimonious regression is used; "bpsn" only
uses RJ for regressions with p >= n, and "none" never uses RJ

capm when TRUE this argument indicates that the number of components of β should
not exceed n, the number of response variables in a particular regression

start a list depicting starting values for the parameters that are use to initialize the
Markov chain. Usually this will be a "monomvn"-class object depicting maxi-
mum likelihood estimates output from the monomvn function. The relevant fields
are the mean vector $mu, covariance matrix $S, monotone ordering $o (for sanity
checking with input y), component vector $ncomp and penalty parameter vector
$lambda; see note below

mprior prior on the number of non-zero regression coefficients (and therefore covari-
ates) m in the model. The default (mprior = 0) encodes the uniform prior on 0 <
m < M. A scalar value 0 <= mprior <= 1 implies a Binomial prior Bin(m|n=M,p=mprior).
A 2-vector mprior=c(g,h) of positive values g and h represents gives Bin(m|n=M,p)
prior where p~Beta(g,h)

rd =c(r,delta); a 2-vector of prior parameters for λ2 which depends on the re-
gression method. When method = "lasso" then the components are the α (shape)
and β (rate) parameters to the a gamma distribution G(r,delta); when method
= "ridge" the components are the α (shape) and β (scale) parameters to an
inverse-gamma distribution IG(r/2,delta/2)

theta the rate parameter (> 0) to the exponential prior on the degrees of freedom
paramter nu for each regression model implementing Student-t errors (for each
column of Y marginally) by a scale-mixture prior. See blasso for more details.
The default setting of theta = 0 turns off this prior, defaulting to a normal errors
prior. A negative setting triggers a pooling of the degrees of freedom parame-
ter across all columns of Y. I.e., Y is modeled as multivariate-t. In this case
abs{theta} is used as the prior parameterization
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rao.s2 indicates whether to Rao-Blackwellized samples for σ2 should be used (default
TRUE); see the details section of blasso for more information

QP if non-NULL this argument should either be TRUE, a positive integer, or contain
a list specifying a Quadratic Program to solve as a function of the samples of
mu = dvec and Sigma = Dmat in the notation of solve.QP; see default.QP for a
default specification that is used when QP = TRUE or a positive integer is is given;
more details are below

verb verbosity level; currently only verb = 0 and verb = 1 are supported

trace if TRUE then samples from all parameters are saved to files in the CWD, and then
read back into the "monomvn"-class object upon return

Details

If pre = TRUE then bmonomvn first re-arranges the columns of y into nondecreasing order with re-
spect to the number of missing (NA) entries. Then (at least) the first column should be completely
observed.

Samples from the posterior distribution of the MVN mean vector and covariance matrix are ob-
tained sampling from the posterior distribution of Bayesian regression models. The methodology
for converting these to samples from the mean vector and covariance matrix is outlined in the
monomvn documentation, detailing a similarly structured maximum likelihood approach. Also see
the references below.

Whenever the regression model is ill–posed (i.e., when there are more covariates than responses,
or a “big p small n” problem) then Bayesian lasso or ridge regressions – possibly augmented with
Reversible Jump (RJ) for model selection – are used instead. See the Park & Casella reference
below, and the blasso documentation. To guarantee each regression is well posed the combination
setting of method="lsr" and RJ="none" is not allowed. As in monomvn the p argument can be
used to turn on lasso or ridge regressions (possibly with RJ) at other times. The exception is the
"factor" method which always involves an OLS regression on (a subset of) the first p columns of
y.

Samples from a function of samples of mu and Sigma can be obtained by specifying a Quadratic
program via the argument QP. The idea is to allow for the calculation of the distribution of minimum
variance and mean–variance portfolios, although the interface is quite general. See default.QP for
more details, as default.QP(ncol(y)) is used when the argument QP = TRUE is given. When a
positive integer is given, then the first QP columns of y are treated as factors by using

default.QP(ncol(y) - QP)

instead. The result is that the corresponding components of (samples of) mu and rows/cols of S are
not factored into the specification of the resulting Quadratic Program

Value

bmonomvn returns an object of class "monomvn", which is a list containing the inputs above and a
subset of the components below.

call a copy of the function call as used

mu estimated mean vector with columns corresponding to the columns of y
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S estimated covariance matrix with rows and columns corresponding to the columns
of y

mu.var estimated variance of the mean vector with columns corresponding to the columns
of y

mu.cov estimated covariance matrix of the mean vector with columns corresponding to
the columns of y

S.var estimated variance of the individual components of the covariance matrix with
columns and rows corresponding to the columns of y

mu.map estimated maximum a’ posteriori (MAP) of the mean vector with columns cor-
responding to the columns of y

S.map estimated MAP of the individual components of the covariance matrix with
columns and rows corresponding to the columns of y

S.nz posterior probability that the individual entries of the covariance matrix are non–
zero

Si.nz posterior probability that the individual entries of the inverse of the covariance
matrix are non–zero

nu when theta < 0 this field provides a trace of the pooled nu parameter to the
multivariate-t distribution

lpost.map log posterior probability of the MAP estimate

which.map gives the time index of the sample corresponding to the MAP estimate

llik a trace of the log likelihood of the data

llik.norm a trace of the log likelihood under the Normal errors model when sampling under
the Student-t model; i.e., it is not present unless theta > 0. Used for calculating
Bayes Factors

na when pre = TRUE this is a vector containing number of NA entries in each column
of y

o when pre = TRUE this is a vector containing the index of each column in the
sorting of the columns of y obtained by o <- order(na)

method method of regression used on each column, or "bcomplete" indicating that no
regression was used

thin the (actual) number of thinning rounds used for the regression (method) in each
column

lambda2 records the mean λ2 value found in the trace of the Bayesian Lasso regressions.
Zero-values result when the column corresponds to a complete case or an ordi-
nary least squares regression (these would be NA entries from monomvn)

ncomp records the mean number of components (columns of the design matrix) used in
the regression model for each column of y. If input RJ = FALSE then this simply
corresponds to the monotone ordering (these would correspond to the NA entries
from monomvn). When RJ = TRUE the monotone ordering is an upper bound (on
each entry)

trace if input trace = TRUE then this field contains traces of the samples of µ in the
field $mu and of Σ in the field $S, and of all regression parameters for each of
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the m = length(mu) columns in the field $reg. This $reg field is a stripped-
down "blasso"-class object so that the methods of that object may be used for
analysis. If data augmentation is required to complete the monotone missingness
pattern, then samples from these entries of Y are contained in $DA where the
column names indicate the i-j entry of Y sampled; see the R output below

R gives a matrix version of the missingness pattern used: 0-entries mean ob-
served; 1-entries indicate missing values conforming to a monotone pattern;
2-entries indicate missing values that require data augmentation to complete a
monotone missingness pattern

B from inputs: number of Burn-In MCMC sampling rounds, during which samples
are discarded

T from inputs: total number of MCMC sampling rounds to take place after burn-
in, during which samples are saved

r from inputs: alpha (shape) parameter to the gamma distribution prior for the
lasso parameter lambda

delta from inputs: beta (rate) parameter to the gamma distribution prior for the lasso
parameter lambda

QP if a valid (non–FALSE or NULL) QP argument is given, then this field contains the
specification of a Quadratic Program in the form of a list with entries includ-
ing $dvec, $Amat, $b0, and $meq, similar to the usage in solve.QP, and some
others; see default.QP for more details

W when input QP = TRUE is given, then this field contains a T*ncol(y) matrix of
samples from the posterior distribution of the solution to the Quadratic Program,
which can be visualized via plot.monomvn using the argument which = "QP"

Note

Whenever the bmonomvn algorithm requires a regression where p >= n, i.e., if any of the columns in
the y matrix have fewer non–NA elements than the number of columns with more non–NA elements,
then it is helpful to employ both lasso/ridge and the RJ method.

It is important that any starting values provided in the start be compatible with the regression
model specified by inputs RJ and method. Any incompatibilities will result with a warning that
(alternative) default action was taken and may result in an undesired (possibly inferior) model being
fit

Author(s)

Robert B. Gramacy <rbg@vt.edu>

References

R.B. Gramacy and E. Pantaleo (2010). Shrinkage regression for multivariate inference with missing
data, and an application to portfolio balancing. Bayesian Analysis. 5(1), 237-262. doi:10.1214/
10BA602 Preprint available on arXiv:0710.5837 https://arxiv.org/abs/0907.2135

Roderick J.A. Little and Donald B. Rubin (2002). Statistical Analysis with Missing Data, Second
Edition. Wilely.

https://bobby.gramacy.com/r_packages/monomvn/

https://doi.org/10.1214/10-BA602
https://doi.org/10.1214/10-BA602
https://arxiv.org/abs/0907.2135
https://bobby.gramacy.com/r_packages/monomvn/
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See Also

blasso, monomvn, default.QP, em.norm in the now defunct norm and mvnmle packages, and
returns

Examples

## standard usage, duplicating the results in
## Little and Rubin, section 7.4.3
data(cement.miss)
out <- bmonomvn(cement.miss)
out
out$mu
out$S

##
## A bigger example, comparing the various
## parsimonious methods
##

## generate N=100 samples from a 10-d random MVN
xmuS <- randmvn(100, 20)

## randomly impose monotone missingness
xmiss <- rmono(xmuS$x)

## using least squares only when necessary,
obl <- bmonomvn(xmiss)
obl

## look at the posterior variability
par(mfrow=c(1,2))
plot(obl)
plot(obl, "S")

## compare to maximum likelihood
Ellik.norm(obl$mu, obl$S, xmuS$mu, xmuS$S)
oml <- monomvn(xmiss, method="lasso")
Ellik.norm(oml$mu, oml$S, xmuS$mu, xmuS$S)

##
## a min-variance portfolio allocation example
##

## get the returns data, and use 20 random cols
data(returns)
train <- returns[,sample(1:ncol(returns), 20)]

## missingness pattern requires DA; also gather
## samples from the solution to a QP
obl.da <- bmonomvn(train, p=0, QP=TRUE)
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## plot the QP weights distribution
plot(obl.da, "QP", xaxis="index")

## get ML solution: will warn about monotone violations
suppressWarnings(oml.da <- monomvn(train, method="lasso"))

## add mean and MLE comparison, requires the
## quadprog library for the solve.QP function
add.pe.QP(obl.da, oml.da)

## now consider adding in the market as a factor
data(market)
mtrain <- cbind(market, train)

## fit the model using only factor regressions
obl.daf <- bmonomvn(mtrain, method="factor", p=1, QP=1)
plot(obl.daf, "QP", xaxis="index", main="using only factors")
suppressWarnings(oml.daf <- monomvn(mtrain, method="factor"))
add.pe.QP(obl.daf, oml.daf)

##
## a Bayes/MLE comparison using least squares sparingly
##

## fit Bayesian and classical lasso
p <- 0.25
obls <- bmonomvn(xmiss, p=p)
Ellik.norm(obls$mu, obls$S, xmuS$mu, xmuS$S)
omls <- monomvn(xmiss, p=p, method="lasso")
Ellik.norm(omls$mu, omls$S, xmuS$mu, xmuS$S)

## compare to ridge regression
obrs <- bmonomvn(xmiss, p=p, method="ridge")
Ellik.norm(obrs$mu, obrs$S, xmuS$mu, xmuS$S)
omrs <- monomvn(xmiss, p=p, method="ridge")
Ellik.norm(omrs$mu, omrs$S, xmuS$mu, xmuS$S)

cement Hald’s Cement Data

Description

Heat evolved in setting of cement, as a function of its chemical composition.

Usage

data(cement)
data(cement.miss)



cement 17

Format

A data.frame with 13 observations on the following 5 variables.

x1 percentage weight in clinkers of 3CaO.Al2O3

x2 percentage weight in clinkers of 3CaO.SiO2

x3 percentage weight in clinkers of 4CaO.Al2O3.Fe2O3

x4 percentage weight in clinkers of 2CaO.SiO2

y heat evolved (calories/gram)

Details

cement.miss is taken from an example in Little & Rubin’s book on Statistical Analysis with Miss-
ing Data (2002), pp.~154, for demonstrating estimation of multivariate means and variances when
the missing data pattern is monotone. These are indicated by NA in cement.miss. See the examples
section of monomvn for a re-working of the example from the textbook

Source

Woods, H., Steinour, H. H. and Starke, H. R. (1932) Effect of composition of Portland cement on
heat evolved during hardening. Industrial Engineering and Chemistry, 24, 1207–1214.

References

Davison, A. C. (2003) Statistical Models. Cambridge University Press. Page 355.

Draper, N.R. and Smith, H. (1998) Applied Regression Analysis. Wiley. Page 630.

Roderick J.A. Little and Donald B. Rubin (2002). Statistical Analysis with Missing Data, Second
Edition. Wilely. Page 154.

https://bobby.gramacy.com/r_packages/monomvn/

See Also

monomvn – Several other R packages also include this data set

Examples

data(cement)
lm(y~x1+x2+x3+x4,data=cement)

https://bobby.gramacy.com/r_packages/monomvn/
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default.QP Generating a default Quadratic Program for bmonomvn

Description

This function generates a default “minimum variance” Quadratic Program in order to obtain samples
of the solution under the posterior for parameters µ and Σ obtained via bmonomvn. The list generated
as output has entries similar to the inputs of solve.QP from the quadprog package

Usage

default.QP(m, dmu = FALSE, mu.constr = NULL)

Arguments

m the dimension of the solution space; usually ncol(y) or equivalently length(mu),
ncol(S) and nrow(S) in the usage of bmonomvn

dmu a logical indicating whether dvec should be replaced with samples of µ; see
details below

mu.constr a vector indicating linear constraints on the samples of µ to be included in the
default constraint set. See details below; the default of NULL indicates none

Details

When bmonomvn(y, QP=TRUE) is called, this function is used to generate a default Quadratic Pro-
gram that samples from the argument w such that

min
w

w⊤Σw,

subject to the constraints that all 0 ≤ wi ≤ 1, for i = 1, . . . ,m,

m∑
i=1

wi = 1,

and where Σ is sampled from its posterior distribution conditional on the data y. Alternatively,
this function can be used as a skeleton to for adaptation to more general Quadratic Programs by
adjusting the list that is returned, as described in the “value” section below.

Non-default settings of the arguments dmu and mu.constr augment the default Quadratic Program,
described above, in two standard ways. Specifying dvec = TRUE causes the program objective to
change to

min
w

−w⊤µ+
1

2
w⊤Σw,

with the same constraints as above. Setting mu.constr = 1, say, would augment the constraints to
include

µ⊤w ≥ 1,
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for samples of µ from the posterior. Setting mu.constr = c(1,2) would augment the constraints
still further with

−µ⊤w ≥ −2,

i.e., with alternating sign on the linear part, so that each sample of µ⊤w must lie in the interval [1,2].
So whereas dmu = TRUE allows the mu samples to enter the objective in a standard way, mu.constr
(!= NULL) allows it to enter the constraints.

The accompanying function monomvn.solve.QP can act as an interface between the constructed
(default) QP object, and estimates of the covariance matrix Σ and mean vector µ, that is identical to
the one used on the posterior-sample version implemented in bmonomvn. The example below, and
those in the documentation for bmonomvn, illustrate how this feature may be used to extract mean
and MLE solutions to the constructed Quadratic Program

Value

This function returns a list that can be interpreted as specifying the following arguments to the
solve.QP function in the quadprog package. See solve.QP for more information of the general
specification of these arguments. In what follows we simply document the defaults provided by
default.QP. Note that the Dmat argument is not, specified as bmonomvn will use samples from S
(from the posterior) instead

m length(dvec), etc.

dvec a zero-vector rep(0, m), or a one-vector rep(1, m) when dmu = TRUE as the real
dvec that will be used by solve.QP will then be dvec * mu

dmu a copy of the dmu input argument

Amat a matrix describing a linear transformation which, together with b0 and meq,
describe the constraint that the components of the sampled solution(s), w, must
be positive and sum to one

b0 a vector containing the (RHS of) in/equalities described by the these constraints

meq an integer scalar indicating that the first meq constraints described by Amat and
b0 are equality constraints; the rest are >=

mu.constr a vector whose length is one greater than the input argument of the same name,
providing bmonomvn with the number
mu.constr[1] = length(mu.constr[-1])

and location mu.constr[-1] of the columns of Amat which require multiplica-
tion by samples of mu

The $QP object that is returned from bmonomvn will have the following additional field

o an integer vector of length m indicating the ordering of the rows of $Amat, and
thus the rows of solutions $W that was used in the monotone factorization of the
likelihood. This field appears only after bmonomvn returns a QP object checked
by the internal function check.QP

Author(s)

Robert B. Gramacy <rbg@vt.edu>
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See Also

bmonomvn and solve.QP in the quadprog package, monomvn.solve.QP

Examples

## generate N=100 samples from a 10-d random MVN
## and randomly impose monotone missingness
xmuS <- randmvn(100, 20)
xmiss <- rmono(xmuS$x)

## set up the minimum-variance (default) Quadratic Program
## and sample from the posterior of the solution space
qp1 <- default.QP(ncol(xmiss))
obl1 <- bmonomvn(xmiss, QP=qp1)
bm1 <- monomvn.solve.QP(obl1$S, qp1) ## calculate mean
bm1er <- monomvn.solve.QP(obl1$S + obl1$mu.cov, qp1) ## use estimation risk
oml1 <- monomvn(xmiss)
mm1 <- monomvn.solve.QP(oml1$S, qp1) ## calculate MLE

## now obtain samples from the solution space of the
## mean-variance QP
qp2 <- default.QP(ncol(xmiss), dmu=TRUE)
obl2 <- bmonomvn(xmiss, QP=qp2)
bm2 <- monomvn.solve.QP(obl2$S, qp2, obl2$mu) ## calculate mean
bm2er <- monomvn.solve.QP(obl2$S + obl2$mu.cov, qp2, obl2$mu) ## use estimation risk
oml2 <- monomvn(xmiss)
mm2 <- monomvn.solve.QP(oml2$S, qp2, oml2$mu) ## calculate MLE

## now obtain samples from minimum variance solutions
## where the mean weighted (samples) are constrained to be
## greater one
qp3 <- default.QP(ncol(xmiss), mu.constr=1)
obl3 <- bmonomvn(xmiss, QP=qp3)
bm3 <- monomvn.solve.QP(obl3$S, qp3, obl3$mu) ## calculate mean
bm3er <- monomvn.solve.QP(obl3$S + obl3$mu.cov, qp3, obl3$mu) ## use estimation risk
oml3 <- monomvn(xmiss)
mm3 <- monomvn.solve.QP(oml3$S, qp3, oml2$mu) ## calculate MLE

## plot a comparison
par(mfrow=c(3,1))
plot(obl1, which="QP", xaxis="index", main="Minimum Variance")
points(bm1er, col=4, pch=17, cex=1.5) ## add estimation risk
points(bm1, col=3, pch=18, cex=1.5) ## add mean
points(mm1, col=5, pch=16, cex=1.5) ## add MLE
legend("topleft", c("MAP", "posterior mean", "ER", "MLE"), col=2:5,

pch=c(21,18,17,16), cex=1.5)
plot(obl2, which="QP", xaxis="index", main="Mean Variance")
points(bm2er, col=4, pch=17, cex=1.5) ## add estimation risk
points(bm2, col=3, pch=18, cex=1.5) ## add mean
points(mm2, col=5, pch=16, cex=1.5) ## add MLE
plot(obl3, which="QP", xaxis="index", main="Minimum Variance, mean >= 1")
points(bm3er, col=4, pch=17, cex=1.5) ## add estimation risk
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points(bm3, col=3, pch=18, cex=1.5) ## add mean
points(mm3, col=5, pch=16, cex=1.5) ## add MLE

## for a further comparison of samples of the QP solution
## w under Bayesian and non-Bayesian monomvn, see the
## examples in the bmonomvn help file

metrics RMSE, Expected Log Likelihood and KL Divergence Between Two
Multivariate Normal Distributions

Description

These functions calculate the root-mean-squared-error, the expected log likelihood, and Kullback-
Leibler (KL) divergence (a.k.a. distance), between two multivariate normal (MVN) distributions
described by their mean vector and covariance matrix

Usage

rmse.muS(mu1, S1, mu2, S2)
Ellik.norm(mu1, S1, mu2, S2, quiet=FALSE)
kl.norm(mu1, S1, mu2, S2, quiet=FALSE, symm=FALSE)

Arguments

mu1 mean vector of first (estimated) MVN

S1 covariance matrix of first (estimated) MVN

mu2 mean vector of second (true, baseline, or comparator) MVN

S2 covariance matrix of second (true, baseline, or comparator) MVN

quiet when FALSE (default)

symm when TRUE a symmetrized version of the KL divergence is used; see the note
below

Details

The root-mean-squared-error is calculated between the entries of the mean vectors, and the upper-
triangular part of the covariance matrices (including the diagonal).

The KL divergence is given by the formula:

DKL(N1∥N2) =
1

2

(
log

(
|Σ1|
|Σ2|

)
+ tr

(
Σ−1

1 Σ2

)
+ (µ1 − µ2)

⊤
Σ−1

1 (µ1 − µ2)−N

)
where N is length(mu1), and must agree with the dimensions of the other parameters. Note that
the parameterization used involves swapped arguments compared to some other references, e.g., as
provided by Wikipedia. See note below.
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The expected log likelihood can be formulated in terms of the KL divergence. That is, the expected
log likelihood of data simulated from the normal distribution with parameters mu2 and S2 under the
estimated normal with parameters mu1 and S1 is given by

−1

2
ln{(2πe)N |Σ2|} −DKL(N1∥N2).

Value

In the case of the expected log likelihood the result is a real number. The RMSE is a positive real
number. The KL divergence method returns a positive real number depicting the distance between
the two normal distributions

Note

The KL-divergence is not symmetric. Therefore

kl.norm(mu1,S1,mu2,S2) != kl.norm(mu2,S2,mu1,S1).

But a symmetric metric can be constructed from

0.5 * (kl.norm(mu1,S1,mu2,S2) + kl.norm(mu2,S2,mu1,S1))

or by using symm = TRUE. The arguments are reversed compared to some other references, like
Wikipedia. To match those versions use kl.norm(mu2, S2, mu1, s1)

Author(s)

Robert B. Gramacy <rbg@vt.edu>

References

https://bobby.gramacy.com/r_packages/monomvn/

Examples

mu1 <- rnorm(5)
s1 <- matrix(rnorm(100), ncol=5)
S1 <- t(s1) %*% s1

mu2 <- rnorm(5)
s2 <- matrix(rnorm(100), ncol=5)
S2 <- t(s2) %*% s2

## RMSE
rmse.muS(mu1, S1, mu2, S2)

## expected log likelihood
Ellik.norm(mu1, S1, mu2, S2)

## KL is not symmetric
kl.norm(mu1, S1, mu2, S2)
kl.norm(mu2, S2, mu1, S1)

https://bobby.gramacy.com/r_packages/monomvn/
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## symmetric version
kl.norm(mu2, S2, mu1, S1, symm=TRUE)

monomvn Maximum Likelihood Estimation for Multivariate Normal Data with
Monotone Missingness

Description

Maximum likelihood estimation of the mean and covariance matrix of multivariate normal (MVN)
distributed data with a monotone missingness pattern. Through the use of parsimonious/shrinkage
regressions (e.g., plsr, pcr, ridge, lasso, etc.), where standard regressions fail, this function can
handle an (almost) arbitrary amount of missing data

Usage

monomvn(y, pre = TRUE, method = c("plsr", "pcr", "lasso", "lar",
"forward.stagewise", "stepwise", "ridge", "factor"), p = 0.9,
ncomp.max = Inf, batch = TRUE, validation = c("CV", "LOO", "Cp"),
obs = FALSE, verb = 0, quiet = TRUE)

Arguments

y data matrix were each row is interpreted as a random sample from a MVN
distribution with missing values indicated by NA

pre logical indicating whether pre-processing of the y is to be performed. This sorts
the columns so that the number of NAs is non-decreasing with the column index

method describes the type of parsimonious (or shrinkage) regression to be performed
when standard least squares regression fails. From the pls package we have
"plsr" (plsr, the default) for partial least squares and "pcr" (pcr) for standard
principal component regression. From the lars package (see the "type" argu-
ment to lars) we have "lasso" for L1-constrained regression, "lar" for least
angle regression, "forward.stagewise" and "stepwise" for fast implemen-
tations of classical forward selection of covariates. From the MASS package
we have "ridge" as implemented by the lm.ridge function. The "factor"
method treats the first p columns of y as known factors

p when performing regressions, p is the proportion of the number of columns to
rows in the design matrix before an alternative regression method (those above)
is performed as if least-squares regression has “failed”. Least-squares regression
is known to fail when the number of columns equals the number of rows, hence a
default of p = 0.9 <= 1. Alternatively, setting p = 0 forces method to be used for
every regression. Intermediate settings of p allow the user to control when least-
squares regressions stop and the method ones start. When method = "factor"
the p argument represents an integer (positive) number of initial columns of y to
treat as known factors
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ncomp.max maximal number of (principal) components to include in a method—only mean-
ingful for the "plsr" or "pcr" methods. Large settings can cause the execution
to be slow as it drastically increases the cross-validation (CV) time

batch indicates whether the columns with equal missingness should be processed to-
gether using a multi-response regression. This is more efficient if many OLS
regressions are used, but can lead to slightly poorer, even unstable, fits when
parsimonious regressions are used

validation method for cross validation when applying a parsimonious regression method.
The default setting of "CV" (randomized 10-fold cross-validation) is the faster
method, but does not yield a deterministic result and does not apply for regres-
sions on less than ten responses. "LOO" (leave-one-out cross-validation) is de-
terministic, always applicable, and applied automatically whenever "CV" cannot
be used. When standard least squares is appropriate, the methods implemented
the lars package (e.g. lasso) support model choice via the "Cp" statistic, which
defaults to the "CV" method when least squares fails. This argument is ignored
for the "ridge" method; see details below

obs logical indicating whether or not to (additionally) compute a mean vector and
covariance matrix based only on the observed data, without regressions. I.e.,
means are calculated as averages of each non-NA entry in the columns of y, and
entries (a,b) of the covariance matrix are calculated by applying cov(ya,yb)
to the jointly non-NA entries of columns a and b of y

verb whether or not to print progress indicators. The default (verb = 0) keeps quiet,
while any positive number causes brief statement about dimensions of each re-
gression to print to the screen as it happens. verb = 2 causes each of the ML
regression estimators to be printed along with the corresponding new entries
of the mean and columns of the covariance matrix. verb = 3 requires that the
RETURN key be pressed between each print statement

quiet causes warnings about regressions to be silenced when TRUE

Details

If pre = TRUE then monomvn first re-arranges the columns of y into nondecreasing order with re-
spect to the number of missing (NA) entries. Then (at least) the first column should be completely
observed. The mean components and covariances between the first set of complete columns are
obtained through the standard mean and cov routines.

Next each successive group of columns with the same missingness pattern is processed in sequence
(assuming batch = TRUE). Suppose a total of j columns have been processed this way already. Let
y2 represent the non-missing contingent of the next group of k columns of y with and identical
missingness pattern, and let y1 be the previously processed j-1 columns of y containing only the
rows corresponding to each non-NA entry in y2. I.e., nrow(y1) = nrow(y2). Note that y1 contains
no NA entries since the missing data pattern is monotone. The k next entries (indices j:(j+k))
of the mean vector, and the j:(j+k) rows and columns of the covariance matrix are obtained by
multivariate regression of y2 on y1. The regression method used (except in the case of method =
"factor" depends on the number of rows and columns in y1 and on the p parameter. Whenever
ncol(y1) < p*nrow(y1) least-squares regression is used, otherwise method = c("pcr", "plsr").
If ever a least-squares regression fails due to co-linearity then one of the other methods is tried. The
"factor" method always involves an OLS regression on (a subset of) the first p columns of y.
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All methods require a scheme for estimating the amount of variability explained by increasing the
numbers of coefficients (or principal components) in the model. Towards this end, the pls and
lars packages support 10-fold cross validation (CV) or leave-one-out (LOO) CV estimates of root
mean squared error. See pls and lars for more details. monomvn uses CV in all cases except when
nrow(y1) <= 10, in which case CV fails and LOO is used. Whenever nrow(y1) <= 3 pcr fails, so
plsr is used instead. If quiet = FALSE then a warning is given whenever the first choice for a
regression fails.

For pls methods, RMSEs are calculated for a number of components in 1:ncomp.max where a NULL
value for ncomp.max it is replaced with

ncomp.max <- min(ncomp.max, ncol(y2), nrow(y1)-1)

which is the max allowed by the pls package.

Simple heuristics are used to select a small number of components (ncomp for pls), or number of
coefficients (for lars), which explains a large amount of the variability (RMSE). The lars methods
use a “one-standard error rule” outlined in Section 7.10, page 216 of HTF below. The pls package
does not currently support the calculation of standard errors for CV estimates of RMSE, so a simple
linear penalty for increasing ncomp is used instead. The ridge constant (lambda) for lm.ridge is set
using the optimize function on the GCV output.

Based on the ML ncol(y1)+1 regression coefficients (including intercept) obtained for each of the
columns of y2, and on the corresponding matrix of residual sum of squares, and on the previous
j-1 means and rows/cols of the covariance matrix, the j:(j+k) entries and rows/cols can be filled
in as described by Little and Rubin, section 7.4.3.

Once every column has been processed, the entries of the mean vector, and rows/cols of the covari-
ance matrix are re-arranged into their original order.

Value

monomvn returns an object of class "monomvn", which is a list containing a subset of the compo-
nents below.

call a copy of the function call as used
mu estimated mean vector with columns corresponding to the columns of y
S estimated covariance matrix with rows and columns corresponding to the columns

of y
na when pre = TRUE this is a vector containing number of NA entries in each column

of y
o when pre = TRUE this is a vector containing the index of each column in the

sorting of the columns of y obtained by o <- order(na)

method method of regression used on each column, or "complete" indicating that no
regression was necessary

ncomp number of components in a plsr or pcr regression, or NA if such a method was
not used. This field is used to record λ when lm.ridge is used

lambda if method is one of c("lasso", "forward.stagewise", "ridge"), then this
field records the λ penalty parameters used

mu.obs when obs = TRUE this is the “observed” mean vector
S.obs when obs = TRUE this is the “observed” covariance matrix, as described above.

Note that S.obs is usually not positive definite
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Note

The CV in plsr and lars are random in nature, and so can be dependent on the random seed. Use
validation=LOO for deterministic (but slower) result.

When using method = "factor" in the current version of the package, the factors in the first p
columns of y must also obey the monotone pattern, and, have no more NA entries than the other
columns of y.

Be warned that the lars implementation of "forward.stagewise" can sometimes get stuck in (what
seems like) an infinite loop. This is not a bug in the monomvn package; the bug has been reported to
the authors of lars

Author(s)

Robert B. Gramacy <rbg@vt.edu>

References

Robert B. Gramacy, Joo Hee Lee, and Ricardo Silva (2007). On estimating covariances between
many assets with histories of highly variable length.
Preprint available on arXiv:0710.5837: https://arxiv.org/abs/0710.5837

Roderick J.A. Little and Donald B. Rubin (2002). Statistical Analysis with Missing Data, Second
Edition. Wilely.

Bjorn-Helge Mevik and Ron Wehrens (2007). The pls Package: Principal Component and Partial
Least Squares Regression in R. Journal of Statistical Software 18(2)

Bradley Efron, Trevor Hastie, Ian Johnstone and Robert Tibshirani (2003). Least Angle Regression
(with discussion). Annals of Statistics 32(2); see also
https://hastie.su.domains/Papers/LARS/LeastAngle_2002.pdf

Trevor Hastie, Robert Tibshirani and Jerome Friedman (2002). Elements of Statistical Learning.
Springer, NY. [HTF]

Some of the code for monomvn, and its subroutines, was inspired by code found on the world wide
web, written by Daniel Heitjan. Search for “fcn.q”

https://bobby.gramacy.com/r_packages/monomvn/

See Also

bmonomvn, em.norm in the now defunct norm and mvnmle packages

Examples

## standard usage, duplicating the results in
## Little and Rubin, section 7.4.3 -- try adding
## verb=3 argument for a step-by-step breakdown
data(cement.miss)
out <- monomvn(cement.miss)
out
out$mu
out$S

https://arxiv.org/abs/0710.5837
https://hastie.su.domains/Papers/LARS/LeastAngle_2002.pdf
https://bobby.gramacy.com/r_packages/monomvn/
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##
## A bigger example, comparing the various methods
##

## generate N=100 samples from a 10-d random MVN
xmuS <- randmvn(100, 20)

## randomly impose monotone missingness
xmiss <- rmono(xmuS$x)

## plsr
oplsr <- monomvn(xmiss, obs=TRUE)
oplsr
Ellik.norm(oplsr$mu, oplsr$S, xmuS$mu, xmuS$S)

## calculate the complete and observed RMSEs
n <- nrow(xmiss) - max(oplsr$na)
x.c <- xmiss[1:n,]
mu.c <- apply(x.c, 2, mean)
S.c <- cov(x.c)*(n-1)/n
Ellik.norm(mu.c, S.c, xmuS$mu, xmuS$S)
Ellik.norm(oplsr$mu.obs, oplsr$S.obs, xmuS$mu, xmuS$S)

## plcr
opcr <- monomvn(xmiss, method="pcr")
Ellik.norm(opcr$mu, opcr$S, xmuS$mu, xmuS$S)

## ridge regression
oridge <- monomvn(xmiss, method="ridge")
Ellik.norm(oridge$mu, oridge$S, xmuS$mu, xmuS$S)

## lasso
olasso <- monomvn(xmiss, method="lasso")
Ellik.norm(olasso$mu, olasso$S, xmuS$mu, xmuS$S)

## lar
olar <- monomvn(xmiss, method="lar")
Ellik.norm(olar$mu, olar$S, xmuS$mu, xmuS$S)

## forward.stagewise
ofs <- monomvn(xmiss, method="forward.stagewise")
Ellik.norm(ofs$mu, ofs$S, xmuS$mu, xmuS$S)

## stepwise
ostep <- monomvn(xmiss, method="stepwise")
Ellik.norm(ostep$mu, ostep$S, xmuS$mu, xmuS$S)

monomvn.s3 Summarizing monomvn output
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Description

Summarizing, printing, and plotting the contents of a "monomvn"-class object

Usage

## S3 method for class 'monomvn'
summary(object, Si = FALSE, ...)
## S3 method for class 'summary.monomvn'
print(x, ...)
## S3 method for class 'summary.monomvn'
plot(x, gt0 = FALSE, main = NULL,

xlab = "number of zeros", ...)

Arguments

object a "monomvn"-class object that must be named object for the generic methods
summary.monomvn

x a "monomvn"-class object that must be named x for generic printing and plotting
via print.summary.monomvn and plot.summary.monomvn

Si boolean indicating whether object$S should be inverted and inspected for zeros
within summary.monomvn, indicating pairwise independence; default is FALSE

gt0 boolean indicating whether the histograms in plot.summary.monomvn should
exclude columns of object$S or Si without any zero entries

main optional text to be added to the main title of the histograms produced by the
generic plot.summary.monomvn

xlab label for the x-axes of the histograms produced by plot.summary.monomvn;
otherwise default automatically-generated text is used

... passed to print.monomvn, or plot.default

Details

These functions work on the output from both monomvn and bmonomvn.

print.monomvn prints the call followed by a summary of the regression method used at each
iteration of the algorithm. It also indicates how many completely observed features (columns) there
were in the data. For non-least-squares regressions (i.e., plsr, lars and lm.ridge methods) and
indication of the method used for selecting the number of components (i.e., CV, LOO, etc., or none)
is provided

summary.monomvn summarizes information about the number of zeros in the estimated covariance
matrix object$S and its inverse

print.summary.monomvn calls print.monomvn on the object and then prints the result of summary.monomvn

plot.summary.monomvn makes histograms of the number of zeros in the columns of object$S and
its inverse
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Value

summary.monomvn returns a "summary.monomvn"-class object, which is a list containing (a subset
of) the items below. The other functions do not return values.

obj the "monomvn"-class object
marg the proportion of zeros in object$S

S0 a vector containing the number of zeros in each column of object$S
cond if input Si = TRUE this field contains the proportion of zeros in the inverse of

object$S

Si0 if input Si = TRUE this field contains a vector with the number of zeros in each
column of the inverse of object$S

Note

There is one further S3 function for "monomvn"-class objects that has its own help file: plot.monomvn

Author(s)

Robert B. Gramacy <rbg@vt.edu>

References

https://bobby.gramacy.com/r_packages/monomvn/

See Also

bmonomvn, monomvn, plot.monomvn

monomvn.solve.QP Solve a Quadratic Program

Description

Solve a Quadratic Program specified by a QP object using the covariance matrix and mean vector
specified

Usage

monomvn.solve.QP(S, QP, mu = NULL)

Arguments

S a positive-definite covariance matrix whose dimensions agree with the Quadratic
Program, e.g., nrow(QP$Amat)

QP a Quadratic Programming object like one that can be generated automatically by
default.QP

mu an mean vector with length(mu) = nrow(QP$Amat) that is required if QP$dmu
== TRUE or QP$mu.constr[1] != 0

https://bobby.gramacy.com/r_packages/monomvn/
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Details

The protocol executed by this function is identical to the one used on samples of Σ and µ obtained
in bmonomvn when a Quadratic Program is specified through the QP argument. For more details on
the specification of the Quadratic Program implied by a QP object, please see default.QP and the
examples therein

Value

The output is a vector whose length agrees with the dimension of S, describing the solution to the
Quadratic Program given

Author(s)

Robert B. Gramacy <rbg@vt.edu>

See Also

default.QP, bmonomvn, and solve.QP in the quadprog package

plot.monomvn Plotting bmonomvn output

Description

Functions for visualizing the output from bmonomvn, particularly the posterior standard deviation
estimates of the mean vector and covariance matrix, and samples from the solution to a Quadratic
Program

Usage

## S3 method for class 'monomvn'
plot(x, which=c("mu", "S", "Snz", "Sinz", "QP"),

xaxis=c("numna", "index"), main=NULL, uselog=FALSE, ...)

Arguments

x a "monomvn"-class object that must be named x for generic plotting

which determines the parameter whose standard deviation to be visualized: the mean
vector ("mu" for sqrt($mu.var)); the covariance matrix ("S" for sqrt($S.var)),
or "S{i}nz" for sqrt($S{i}.nz), which both result in an image plot; or the
distribution of solutions $W to a Quadratic Program that may be obtained by
supplying QP = TRUE as input to bmonomvn

xaxis indicates how x-axis (or x- and y-axis in the case of which = "S" || "S{i}nz")
should be displayed. The default option "numna" shows the (ordered) number
of missing entries (NAs) in the corresponding column, whereas "index" simply
uses the column index; see details below
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main optional text to be added to the main title of the plots; the default of NULL causes
the automatic generation of a title

uselog a logical which, when TRUE, causes the log of the standard deviation to be plotted
instead

... passed to plot.default

Details

Currently, this function only provides a visualization of the posterior standard deviation estimates
of the parameters, and the distributions of samples from the posterior of the solution to a specified
Quadratic Program. Therefore it only works on the output from bmonomvn

All types of visualization (specified by which) are presented in the order of the number of missing
entries in the columns of the data passed as input to bmonomvn. In the case of which = "mu" this
means that y-values are presented in the order x$o, where the x-axis is either 1:length(x$o) in
the case of xaxis = "index", or x$na[x$o] in the case of xaxis = "numna". When which = "S"
is given the resulting image plot is likewise ordered by x$o where the x- and y-axis are as above,
except that in the case where xaxis = "numna" the repeated counts of NAs are are adjusted by small
increments so that x and y arguments to image are distinct. Since a boxplot is used when which =
"QP" it may be that xaxis = "index" is preferred

Value

The only output of this function is beautiful plots

Author(s)

Robert B. Gramacy <rbg@vt.edu>

References

https://bobby.gramacy.com/r_packages/monomvn/

See Also

bmonomvn, print.monomvn, summary.monomvn

randmvn Randomly Generate a Multivariate Normal Distribution

Description

Randomly generate a mean vector and covariance matrix describing a multivariate normal (MVN)
distribution, and then sample from it

https://bobby.gramacy.com/r_packages/monomvn/


32 randmvn

Usage

randmvn(N, d, method = c("normwish", "parsimonious"),
mup=list(mu = 0, s2 = 1), s2p=list(a = 0.5, b = 1),
pnz=0.1, nu=Inf)

Arguments

N number of samples to draw

d dimension of the MVN, i.e., the length of the mean vector and the number of
rows/cols of the covariance matrix

method the default generation method is "norwish" uses the direct method described
in the details section below, whereas the "parsimonious" method builds up the
random mean vector and covariance via regression coefficients, intercepts, and
variances. See below for more details. Here, a random number of regression
coefficients for each regression are set to zero

mup a list with entries $mu and $s2: $mu is the prior mean for the independent
components of the normally distributed mean vector; $s2 is the prior variance

s2p a list with entries $a and $b only valid for method = "parsimonious": $a > 0
is the baseline inverse gamma prior scale parameter for the regression variances
(the actual parameter used for each column i in 1:d of the covariance matrix is
a + i - 1); $b >= 0 is the rate parameter

pnz a scalar 0 <= pnz <= 1, only valid for method = "parsimonious": determines
the binomial proportion of non-zero regression coefficients in the sequential
build-up of mu and S, thereby indirectly determining the number of non-zero
entries in S

nu a scalar >= 1 indicating the degrees of freedom of a Student-t distribution to be
used instead of an MVN when not infinite

Details

In the direct method ("normwish") the components of the mean vector mu are iid from a standard
normal distribution, and the covariance matrix S is drawn from an inverse–Wishart distribution with
degrees of freedom d + 2 and mean (centering matrix) diag(d)

In the "parsimonious" method mu and S are built up sequentially by randomly sampling intercepts,
regression coefficients (of length i-1 for i in 1:d) and variances by applying the monomvn equa-
tions. A unique prior results when a random number of the regression coefficients are set to zero.
When none are set to zero the direct method results

Value

The return value is a list with the following components:

mu randomly generated mean vector of length d

S randomly generated covariance matrix with d rows and d columns

x if N > 0 then x is an N*d matrix of N samples from the MVN with mean vector mu
and covariance matrix S; otherwise when N = 0 this component is not included
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Note

requires the rmvnorm function of the mvtnorm package

Author(s)

Robert B. Gramacy <rbg@vt.edu>

See Also

rwish, rmvnorm, rmono

Examples

randmvn(5, 3)

regress Switch function for least squares and parsimonious monomvn regres-
sions

Description

This function fits the specified ordinary least squares or parsimonious regression (plsr, pcr, ridge,
and lars methods) depending on the arguments provided, and returns estimates of coefficients and
(co-)variances in a monomvn friendly format

Usage

regress(X, y, method = c("lsr", "plsr", "pcr", "lasso", "lar",
"forward.stagewise", "stepwise", "ridge", "factor"), p = 0,
ncomp.max = Inf, validation = c("CV", "LOO", "Cp"),
verb = 0, quiet = TRUE)

Arguments

X data.frame, matrix, or vector of inputs X

y matrix of responses y of row-length equal to the leading dimension (rows) of
X, i.e., nrow(y) == nrow(X); if y is a vector, then nrow may be interpreted as
length

method describes the type of parsimonious (or shrinkage) regression, or ordinary least
squares. From the pls package we have "plsr" (plsr, the default) for partial least
squares and "pcr" (pcr) for standard principal component regression. From
the lars package (see the "type" argument to lars) we have "lasso" for L1-
constrained regression, "lar" for least angle regression, "forward.stagewise"
and "stepwise" for fast implementations of classical forward selection of co-
variates. From the MASS package we have "ridge" as implemented by the
lm.ridge function. The "factor" method treats the first p columns of y as
known factors
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p when performing regressions, 0 <= p <= 1 is the proportion of the number of
columns to rows in the design matrix before an alternative regression method
(except "lsr") is performed as if least-squares regression “failed”. Least-squares
regression is known to fail when the number of columns is greater than or equal
to the number of rows. The default setting, p = 0, forces the specified method to
be used for every regression unless method = "lsr" is specified but is unstable.
Intermediate settings of p allow the user to specify that least squares regressions
are preferred only when there are sufficiently more rows in the design matrix (X)
than columns. When method = "factor" the p argument represents an integer
(positive) number of initial columns of y to treat as known factors

ncomp.max maximal number of (principal) components to consider in a method—only mean-
ingful for the "plsr" or "pcr" methods. Large settings can cause the execution
to be slow as they drastically increase the cross-validation (CV) time

validation method for cross validation when applying a parsimonious regression method.
The default setting of "CV" (randomized 10-fold cross-validation) is the faster
method, but does not yield a deterministic result and does not apply for regres-
sions on less than ten responses. "LOO" (leave-one-out cross-validation) is de-
terministic, always applicable, and applied automatically whenever "CV" cannot
be used. When standard least squares is appropriate, the methods implemented
the lars package (e.g. lasso) support model choice via the "Cp" statistic, which
defaults to the "CV" method when least squares fails. This argument is ignored
for the "ridge" method; see details below

verb whether or not to print progress indicators. The default (verb = 0) keeps quiet.
This argument is provided for monomvn and is not intended to be set by the user
via this interface

quiet causes warnings about regressions to be silenced when TRUE

Details

All methods (except "lsr") require a scheme for estimating the amount of variability explained by
increasing numbers of non-zero coefficients (or principal components) in the model. Towards this
end, the pls and lars packages support 10-fold cross validation (CV) or leave-one-out (LOO) CV
estimates of root mean squared error. See pls and lars for more details. The regress function uses
CV in all cases except when nrow(X) <= 10, in which case CV fails and LOO is used. Whenever
nrow(X) <= 3 pcr fails, so plsr is used instead. If quiet = FALSE then a warning is given whenever
the first choice for a regression fails.

For pls methods, RMSEs are calculated for a number of components in 1:ncomp.max where a NULL
value for ncomp.max it is replaced with

ncomp.max <- min(ncomp.max, ncol(y), nrow(X)-1)

which is the max allowed by the pls package.

Simple heuristics are used to select a small number of components (ncomp for pls), or number of
coefficients (for lars) which explains a large amount of the variability (RMSE). The lars methods
use a “one-standard error rule” outlined in Section 7.10, page 216 of HTF below. The pls package
does not currently support the calculation of standard errors for CV estimates of RMSE, so a simple
linear penalty for increasing ncomp is used instead. The ridge constant (lambda) for lm.ridge is set
using the optimize function on the GCV output.
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Value

regress returns a list containing the components listed below.

call a copy of the function call as used

method a copy of the method input argument

ncomp depends on the method used: is NA when method = "lsr"; is the number of
principal components for method = "pcr" and method = "plsr"; is the number
of non-zero components in the coefficient vector ($b, not counting the intercept)
for any of the lars methods; and gives the chosen λ penalty parameter for
method = "ridge"

lambda if method is one of c("lasso", "forward.stagewise", "ridge"), then this
field records the λ penalty parameter used

b matrix containing the estimated regression coefficients, with ncol(b) = ncol(y)
and the intercept in the first row

S (biased corrected) maximum likelihood estimate of residual covariance matrix

Note

The CV in plsr and lars are random in nature, and so can be dependent on the random seed. Use
validation="LOO" for deterministic (but slower) result

Be warned that the lars implementation of "forward.stagewise" can sometimes get stuck in (what
seems like) an infinite loop. This is not a bug in the regress function; the bug has been reported to
the authors of lars

Author(s)

Robert B. Gramacy <rbg@vt.edu>

References

Bjorn-Helge Mevik and Ron Wehrens (2007). The pls Package: Principal Component and Partial
Least Squares Regression in R. Journal of Statistical Software 18(2)

Bradley Efron, Trevor Hastie, Ian Johnstone and Robert Tibshirani (2003). Least Angle Regression
(with discussion). Annals of Statistics 32(2); see also
https://hastie.su.domains/Papers/LARS/LeastAngle_2002.pdf

https://bobby.gramacy.com/r_packages/monomvn/

See Also

monomvn, blasso, lars in the lars library, lm.ridge in the MASS library, plsr and pcr in the pls
library

https://hastie.su.domains/Papers/LARS/LeastAngle_2002.pdf
https://bobby.gramacy.com/r_packages/monomvn/
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Examples

## following the lars diabetes example
data(diabetes)
attach(diabetes)

## Ordinary Least Squares regression
reg.ols <- regress(x, y)

## Lasso regression
reg.lasso <- regress(x, y, method="lasso")

## partial least squares regression
reg.plsr <- regress(x, y, method="plsr")

## ridge regression
reg.ridge <- regress(x, y, method="ridge")

## compare the coefs
data.frame(ols=reg.ols$b, lasso=reg.lasso$b,

plsr=reg.plsr$b, ridge=reg.ridge$b)

## summarize the posterior distribution of lambda2 and s2
detach(diabetes)

returns Financial Returns data from NYSE and AMEX

Description

Monthly returns of common domestic stocks traded on the NYSE and the AMEX from April 1968
until 1998; also contains the return to the market

Usage

data(returns)
data(returns.test)
data(market)
data(market.test)

Format

The returns provided are collected in a data.frame with 1168 columns, and 360 rows in the case
of returns and 12 rows for returns.test. The columns are uniquely coded to identify the stock
traded on NYSE or AMEX. The market return is in two vectors market and market.test of length
360 and 12, respectively
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Details

The columns contain monthly returns of common domestic stocks traded on the NYSE and the
AMEX from April 1968 until 1998. returns contains returns up until 1997, whereas returns.test
has the returns for 1997. Both data sets have been cleaned in the following way. All stocks have a
share price greater than $5 and a market capitalization greater than 20% based on the size distribu-
tion of NYSE firms. Stocks without completely observed return series in 1997 were also discarded.

The market returns provided are essentially the monthly return on the S&P500 during the same
period, which is highly correlated with the raw monthly returns weighted by their market capital-
ization

Source

This data is a subset of that originally used by Chan, Karceski, and Lakonishok (1999), and subse-
quently by several others; see the references below. We use it as part of the monomvn package as
an example of a real world data set following a nearly monotone missingness pattern

References

Louis K. Chan, Jason Karceski, and Josef Lakonishok (1999). On Portfolio Optimization: Forecast-
ing Covariances and Choosing the Risk Model. The Review of Financial Studies. 12(5), 937-974

Ravi Jagannathan and Tongshu Ma (2003). Risk Reduction in Large Portfolios: Why Imposing the
Wrong Constraints Helps. Journal of Finance, American Finance Association. 58(4), 1641-1684

Robert B. Gramacy, Joo Hee Lee, and Ricardo Silva (2008). On estimating covariances between
many assets with histories of highly variable length.
Preprint available on arXiv:0710.5837: https://arxiv.org/abs/0710.5837

https://bobby.gramacy.com/r_packages/monomvn/

See Also

monomvn, bmonomvn

Examples

data(returns)

## investigate the monotone missingness pattern
returns.na <- is.na(returns)
image(1:ncol(returns), 1:nrow(returns), t(returns.na))

## for a portfolio balancing exercise, see
## the example in the bmonomvn help file

https://arxiv.org/abs/0710.5837
https://bobby.gramacy.com/r_packages/monomvn/
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rmono Randomly Impose a Monotone Missingness Pattern

Description

Randomly impose a monotone missingness pattern by replacing the ends of each column of the
input matrix by a random number of NAs

Usage

rmono(x, m = 7, ab = NULL)

Arguments

x data matrix

m minimum number of non-NA entries in each column

ab a two-vector of α (ab[1]) and β (ab[2]) parameters to a Beta(α, β) distribution
describing the proportion of NA entries in each column. The default setting ab =
NULL yields a uniform distribution

Details

The returned x always has one (randomly selected) complete column, and no column has fewer than
m non-missing entries. Otherwise, the proportion of missing entries in each column can be uniform,
or it can have a beta distribution with parameters α (ab[1]) and β (ab[2])

Value

returns a matrix with the same dimensions as the input x

Author(s)

Robert B. Gramacy <rbg@vt.edu>

References

https://bobby.gramacy.com/r_packages/monomvn/

See Also

randmvn

Examples

out <- randmvn(10, 3)
rmono(out$x)

https://bobby.gramacy.com/r_packages/monomvn/
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rwish Draw from the Wishart Distribution

Description

Random generation from the Wishart distribution.

Usage

rwish(v, S)

Arguments

v degrees of freedom (scalar)

S inverse scale matrix (p× p)

Details

The mean of a Wishart random variable with v degrees of freedom and inverse scale matrix S is vS.

Value

Returns generates one random draw from the distribution which is a matrix with the same dimen-
sions as S

References

This was copied from the MCMCpack package

Examples

draw <- rwish(3, matrix(c(1,.3,.3,1),2,2))
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